Graph-Revised Convolutional Network

نویسندگان

چکیده

Graph Convolutional Networks (GCNs) have received increasing attention in the machine learning community for effectively leveraging both content features of nodes and linkage patterns across graphs various applications. As real-world are often incomplete noisy, treating them as ground-truth information, which is a common practice most GCNs, unavoidably leads to sub-optimal solutions. Existing efforts addressing this problem either involve an over-parameterized model difficult scale, or simply re-weight observed edges without dealing with missing-edge issue. This paper proposes novel framework called Graph-Revised Network (GRCN), avoids extremes. Specifically, GCN-based graph revision module introduced predicting missing revising edge weights w.r.t. downstream tasks via joint optimization. A theoretical analysis reveals connection between GRCN previous work on multigraph belief propagation. Experiments six benchmark datasets show that consistently outperforms strong baseline methods, especially when original severely labeled instances training highly sparse. (Our code available at https://github.com/Maysir/GRCN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph Based Convolutional Neural Network

In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...

متن کامل

Tensor graph convolutional neural network

In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and grap...

متن کامل

Learning Graph While Training: An Evolving Graph Convolutional Neural Network

Convolution Neural Networks on Graphs are important generalization and extension of classical CNNs. While previous works generally assumed that the graph structures of samples are regular with unified dimensions, in many applications, they are highly diverse or even not well defined. Under some circumstances, e.g. chemical molecular data, clustering or coarsening for simplifying the graphs is h...

متن کامل

MotifNet: a motif-based Graph Convolutional Network for directed graphs

Deep learning on graphs and in particular, graph convolutional neural networks, have recently attracted significant attention in the machine learning community. Many of such techniques explore the analogy between the graph Laplacian eigenvectors and the classical Fourier basis, allowing to formulate the convolution as a multiplication in the spectral domain. One of the key drawback of spectral ...

متن کامل

Probabilistic Graph-based Dependency Parsing with Convolutional Neural Network

This paper presents neural probabilistic parsing models which explore up to thirdorder graph-based parsing with maximum likelihood training criteria. Two neural network extensions are exploited for performance improvement. Firstly, a convolutional layer that absorbs the influences of all words in a sentence is used so that sentence-level information can be effectively captured. Secondly, a line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-67664-3_23